

Série de révision N°4 Epreuve : SCIENCES PHYSIQUES

Niveau: 4 ème Année Scientifiques

CHIMIE

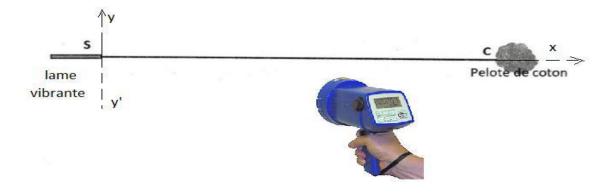
Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau pure est **Ke =10⁻¹⁴**. **Exercice n°1 :**

Le tableau ci- dessous donne quelques valeurs de pH obtenues lors du dosage de 20mL de solutions acides (respectivement acide éthanoïque et acide méthanoïque) de même concentration $C_A=10^{-1}mol.L^{-1}$ par une solution d'hydroxyde de sodium de concentration $C_B=10^{-1}mol.L^{-1}$.

Volume V _B d'hydroxyde de sodium (en mL)	pH de la solution initialement d'acide éthanoïque (S₁)	pH de la solution initialement d'acide méthanoïque (S₂)
0	2,90	2,40
10	4,80	3,80
20	8,75	8,25

- 1) Justifier que la comparaison des **pH initiaux** des solutions (S_1) et (S_2) permet de comparer les forces relatives des acides étudiés.
- 2) Déterminer le volume de la solution d'hydroxyde de sodium versé pour obtenir l'équivalence acido-basique, pour chacun des deux dosages.
- 3) Déterminer le **pKa** de chacun des couples CH₃COOH / CH₃COO et HCOOH / HCOO. Justifier que les valeurs trouvées confirment la comparaison faite en 1).

4)


- a- Justifier le caractère acide ou basique des solutions (S₁) et (S₂) à l'équivalence.
- **b-** Justifier que la comparaison des **pH** au point d'équivalence dans les dosages précédents, permet de connaître le plus faible des deux acides CH₃COOH et HCOOH.
- 5) Au-delà de l'équivalence, les pH de deux solutions tendent vers la même valeur. Expliquer pourquoi.
- 6) Pour permettre une bonne immersion de l'électrode du pH-mètre dans le mélange réactionnel, on ajoute un volume $V_e = 20 \text{ mL}$ d'eau pure aux 20 mL de la solution aqueuse de l'acide éthanoïque contenue dans le bécher et on refait le dosage par la même base que précédemment.
- **a-**Préciser, en le justifiant, si à la suite de cette dilution chacune des valeurs de mesures suivantes : reste inchangé, subit une augmentation ou une diminution.
- Le volume de la solution basique ajoutée pour atteindre l'équivalence.
- Le pH du mélange réactionnel à la demi-équivalence.
- Le pH initial de la solution aqueuse d'acide.
- Le pH à l'équivalence.

b-Déterminer les nouvelles valeurs de mesures effectuées.

PHYSIQUE

Exercice n°1:

Une corde élastique, de longueur L = SC = 40 cm, tendue horizontalement et reliée par l'une de ses extrémités S a un vibreur électrique qui lui impose des vibrations rectilignes sinusoïdales d'amplitude a = 2 mm et de fréquence N= 50Hz. La célérité des ondes le long de la corde est v = 5 ms⁻¹.

- 1) Décrire ce que l'on observe en lumière stroboscopique pour une fréquence des éclairs :
 - a- Ne = 25 Hz.
 - b- Ne = 49 Hz.
- 2) Définir la longueur d'onde λ puis la calculer.
- 3) Ecrire l'équation horaire du mouvement de la source S sachant qu'à l'instant t = 0 s, elle débute son mouvement vers le bas.
- 4) Montrer que l'équation horaire du mouvement d'un point M de la corde d'abscisse x = SM s'écrit :

$$y_M(t) = 2.10^{-3} \sin (100\pi . t - \frac{2\pi x}{\lambda} + \pi) \text{ pour tout } t \ge \frac{x}{v}$$
.

- 5) a- Ecrire l'équation du mouvement d'un point M_1 de la corde d'abscisse $x_1 = SM_1 = 17,5$ cm.
 - b- Représenter sur la figure -1- les diagrammes du mouvement de la source S et du point
- M₁.Comparer les mouvements des points S et M₁
- 6) a- Représenter sur la figure -2- l'aspect de la corde à l'instant t₁=0,035 s.
 - **b-** Déterminer le <u>nombre</u> et les <u>lieux</u> des points de la corde qui ont à l'instant t₁ une élongation de **-1 mm** en se déplaçant dans le sens <u>négatif</u>.

Représenter ces points sur la figure -2-

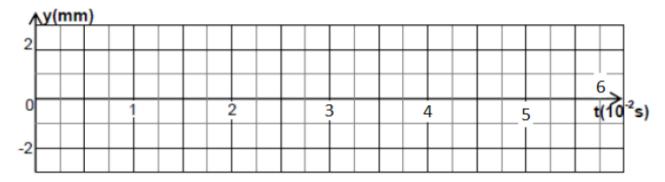


figure -1-

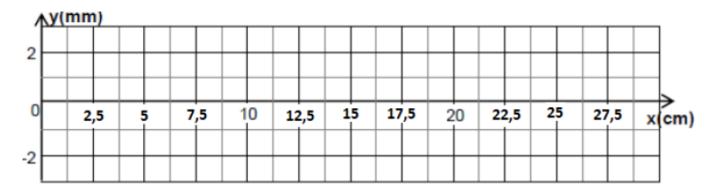


figure -2-

Exercice n°2:

Une corde élastique longueur $\ell = 80$ cm est tendue horizontalement. Son extrémité S est liée à une lame vibrante en mouvement sinusoïdal vertical d'équation :

 $y_s(t) = a \sin(\omega t + \pi)$ pour $t \ge 0$. L'autre extrémité est munie d'un dispositif qui empêche la réflexion des ondes.

L'amortissement est supposé nul.

1°/ L'aspect de la corde à un instant t₀ donné est représenté dans la figure 3.

A l'aide de la **figure 3** Déterminer:

- ❖ l'amplitude de vibration des différents points de la corde atteints par l'onde.
 - \diamondsuit la longueur d'onde λ .
- 2°/ a) Sachant qu'un point M_1 de la corde d'abscisse $x_1 = 24$ cm au repos, est atteint par le front d'onde à l'instant $t_1 = 12$ ms :
 - ❖ Calculer la célérité de l'onde.
 - ❖ En déduire la valeur de la période de vibration de la lame excitatrice.
 - b) Déterminer en fonction de λ , la distance séparant le point \mathbf{M}_1 de la source \mathbf{S} et en déduire la phase initiale du point \mathbf{M}_1 .
 - a) En déduire l'équation horaire du mouvement du point M₁ de la corde.
- 3°/ a) Déterminer la valeur de l'instant t₀ auquel correspond l'aspect de la corde, représentée dans la figure 2.
 - b) Déduire de l'aspect de la corde à l'instant t_0 , son aspect à l'instant t_2 = 36 ms.

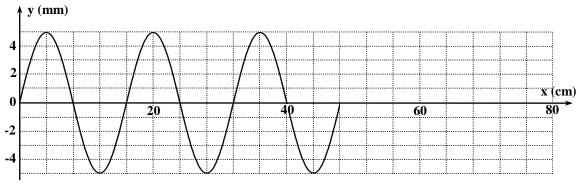


figure 3

