Niveau : 4 ^{ém} sciences informatique

Série de Révision n°3

sciences physiques

Prof: Daghsni Sahbi

Chimie: Thème :électrolyse

On donne: Volume molaire $V_m = 24 \text{ L.mol}^{-1}$

M(Zn) = 65, 4 g.mol⁻¹ constante de Faraday : F = 96500 C

on réalise l'électrolyse d'une solution de chlorure de cuivre II (Zn Cl_2) avec deux électrodes inattaquables en graphite .On observe un dépôt de zinc à l'une des électrodes et il se forme du gaz dichlore Cl_2 sur l'autre électrode .

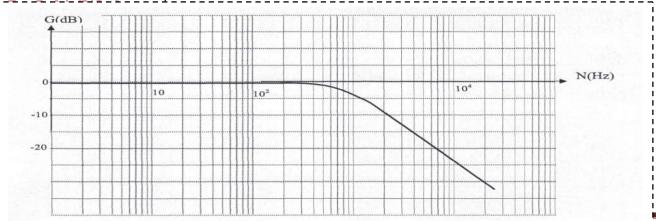
- 1°) a°) Faire un schéma annoté du montage permettant de réaliser cette électrolyse
- b°) Préciser sur ce schéma le sens de déplacement des porteurs de charge.
- 2°) a°) Sur quelle électrode (Anode ou cathode)a lieu le dépôt de cuivre?
- b°) Ecrire les demi équations s' effectuant au niveau de la cathode et au niveau de l'anode
- c°) En déduire l'équation de la réaction d'oxydoréduction qui se produit pendant cette électrolyse
- d°) S -agit -il d'une réaction spontanée ?Justifier
- 3°) Cette électrolyse dure 15 minutes et l'intensité du courant est maintenue constante égale à 1.6A
- a°) Déterminer la masse m du dépôt de cuivre formé
- b°) Déterminer le volume de Cl2 dégagé.

Physique: Thème: Filtres électriques

Exercice n°1:

A l'entrée d'un filtre RC schématisé par la figure ci -dessous, on applique une tension sinusoïdale $U_{\scriptscriptstyle E}(t)$ de fréquence N

réglable:
$$U_E(t) = U_{Em} \sin(2\pi Nt)$$


On donne : $C = 0.47 \mu F$.

- 1°) a°) Etablir l'équation différentielle régissant l'évolution de la tension de sortie $U_{\varepsilon}(t)$.
- b°) En déduire qu'il s'agit d'un filtre de premier ordre.
- 2°) Sachant que la tension de sortie s'écrit : $U_{s}(t) = U_{s}(t) = V_{s}(t) = V_{s}(t)$

$$U_s(t) = U_{sm} \sin(2\pi N t + \varphi_s)$$

- a°) Faire la construction de Fresnel correspondante et préciser l'axe des phases.
- b°) Etablir l'expression de la transmit tance T du filtre et déduire celle du gain G.
- 3°) On fait varier la fréquence N et à l aide d'un décibel mètre , on mesure à chaque fois le gain correspondant On trace ainsi la courbe de réponse suivante :

UE

^{em} -szcences-anformacique

- Serce ar Kevcscon u-s

-prof? - Dagasac Saaw

zaae

Déterminer graphiquement :

- a°) Le gain maximal G_0 et montrer qu'il s'agit d'un filtre passe bas.
- b°) La fréquence de coupure haute Nh et déduire la valeur de R.
- 4°) Pour la fréquence N=Nh , déterminer le déphasage de Us(t) par rapport à UE(t) et déduire φ_s

Exercice n°2:

A. Etude expérimentale : On réalise le montage de la figure 1 , constitué d'un condensateur de capacité $C=0,47\mu F$, d'conducteur ohmique de résistance $R=318\Omega$.

Un GBF délivrant une tension sinusoïdale de fréquence N réglable alimente l'entrée du quadripôle CR est :

$$U_E(t) = U_{Em} \sin(2\pi Nt)$$

Tandis que $u_{\scriptscriptstyle S}(t)$ est la tension de sortie du quadripôle .

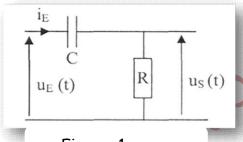
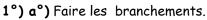
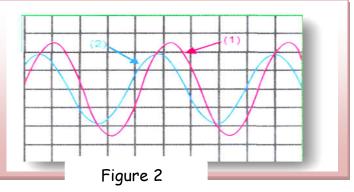
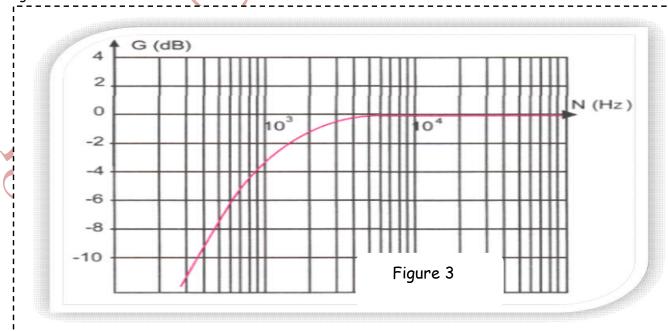



Figure 1


Un oscilloscope bi courbe , convenablement branché permet de visualiser la tension d'entrée $u_{\scriptscriptstyle E}(t)$ sur la voie Y_1 et la tension de sortie $u_{\scriptscriptstyle S}(t)$ sur la voie Y_2 .

Expérience $u^{\circ}1$: On règle l'amplitude du GBF à la valeur $U_{\rm Em}=5V$ Sur l'écran de l'oscilloscope, on

visualise, simultanément les tensions $u_{E}(t)$ et $u_{S}(t)$. on obtient les chronogrammes de la figure 2.



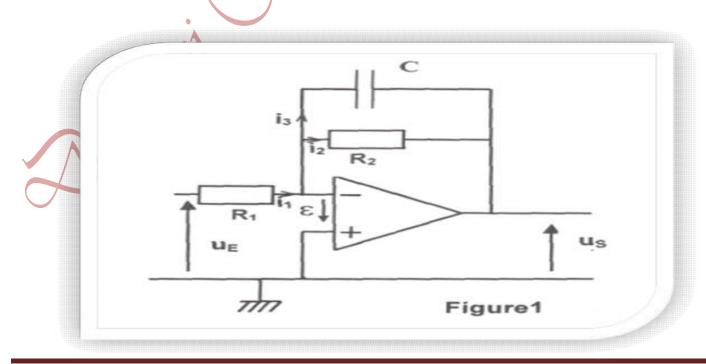
- b°) Déterminer la phase initiale de l'entrée.
- c°) Ecrire l'expression de la tension d'entrée.
- 2°) Montrer que le quadripôle considéré est linéaire.

Expérience n°2:

On fait varier la fréquence N du GBF et pour différentes valeurs de N, on note l'amplitude U_{Sm} de la tension de sortie $u_{\text{S}}(t)$..Par exploitation des résultats de mesures , on trace les courbes G(N) et $\Delta \phi = f(N)$, données par la figure 3 .

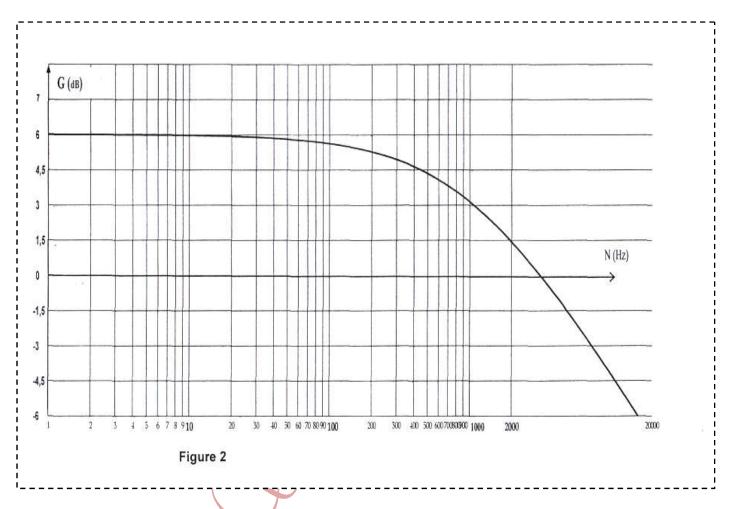
- 1°) A l'aide de la courbe de réponse de la figure 4 :
- a°) Déterminer la fréquence de coupure
- b°) Déterminer la valeur maximale G_0 de G et en déduire la valeur maximale T_0 de T.
- c°) Préciser le comportement du quadripôle CR pour les basses et les hautes fréquences.

B. Etude théorique :


- 1°) a°) Etablir l'équation différentielle pour ce filtre.
- b°) Associer à chaque terme de l'équation différentielle le vecteur de Fresnel correspondant.
- c°) Faire la construction de Fresnel pour ce type de filtre.
- 2°) Déduire la fonction de transfert T.
- 3°) Déterminer le gain G.
- 4°) Etablir l'expression de la fréquence de coupure N_b et la bande passante.
- **5°)** En se basant sur la construction de Fresnel, déterminer le déphasage $\operatorname{tg}\Delta\varphi$ pour ce filtre passe haut en fonction de Nb et N.
- C . On réalise un quadripôle passe bande avec un condensateur de capacité C =0.5 nF en série avec une bobine d'inductance L =9.8 mH et de résistance interne r et un résistor R =370 Ω .
- 1°) Schématiser le filtre réalisé.
- 2°) Déterminer l'équation différentielle en fonction de la tension de sortie Us(t)
- 3°) Représenter le diagramme de Fresnel dans le cas ou $\omega ~ \succsim ~ \omega_0$
- 4°) Montrer que la transmit tance T de ce filtre s'écrit sous la forme : $T = \frac{T_0}{\sqrt{1 + Q^2(x \frac{1}{x})^2}}$

Exercice n°3:

On considère le filtre schématisé par la figure 1. A l'entrée du filtre , on applique une tension


 $U_E(t) = U_{E\,\mathrm{m\,ax}}\,\sin(2\,\pi\,N\,t)\,U_S(t) = U_{S\,\mathrm{max}}\sin(2\pi N t + \varphi_S)\,\mathrm{d'amplitude}\,\,U_{E\,\mathrm{max}} = 2V_{\mathrm{et\,de}}$ fréquence réglable .

La tension de sortie est : $U_{S}(t) = U_{S \max} \sin(2\pi N t + \varphi_{S})$ L'amplificateur opérationnel est supposé idéal et

polarisé à $\pm 15V$

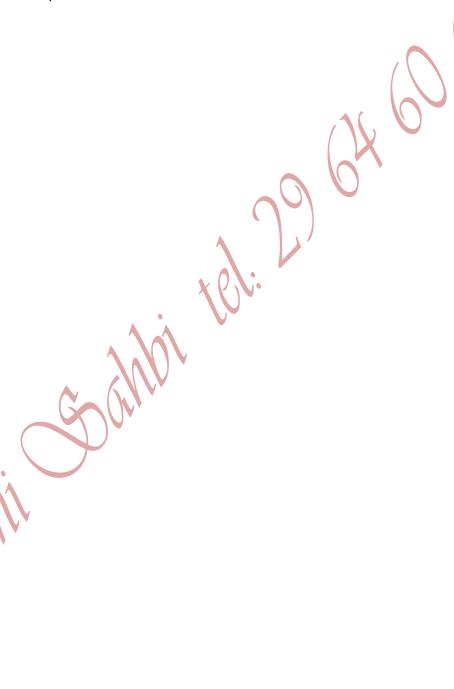
Partie \mathcal{A} : On suit la variation de la transmit tance T du filtre considéré en fonction de la fréquence N du générateur et on trace la courbe traduisant l'évolution du gain G du filtre en fonction de la fréquence N.

- 1°) En exploitant cette courbe, préciser en le justifiant :
- a°) La nature du filtre considéré (passif ou actif)
- b°) Si la tension d'entrée peut être amplifiée ou non.
- c°) S'il s'agit d'un filtre passe -haut ou passe -bas.
- 2°) Déterminer graphiquement :
- a°) La valeur du gain maximal G_0 du filtre.
- b°) Une valeur approchée de la fréquence de coupure **Nc** du filtre .La méthode utilisée sera indiquée sur la courbe de la figure 2

Partie B:

1°) Montrer que l'équation différentielle régissant les variations de la tension de sortie Us(t) du filtre s écrit :

$$\frac{R_1}{R_2}U_s + R_1C \frac{dU_S}{dt} = -U_E$$


- 2°) Faire la construction de Fresnel relative à l'équation différentielle précédente.
- 3°) En exploitant cette construction, déterminer la transmit tance T du filtre.

On rappelle que : $T = \frac{U}{U_{E \text{ m a x}}}$

4°) Déduire que l'expression du gain G du filtre peut s écrire sous la

forme:
$$G = 20 \log \frac{R_2}{R_1} - 10 \log (1 + (2\pi R_2 C)^2)$$

- 5°) a°) Déterminer l'expression du gain maximal Go. Calculer sa valeur et la comparer à celle obtenue graphiquement . On donne : $R_2=2R_1$
- b°) Quelle condition doit satisfaire le gain G pour que le filtre soit passant ?
- c°) Déterminer la fréquence de coupure .

